
Renormalisation group study of a lattice model of the isotropic-nematic transition

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 93

(http://iopscience.iop.org/0305-4470/18/1/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 17:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) 93-100. Printed in Great Britain 
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Abstract. The isotropic-nematic transition is studied using the Lebwohl-Lasher lattice 
model of liquid crystal behaviour. The details of the transition are investigated using the 
Migdal-Kadanoff potential moving version of the real space renormalisation group. The 
method gives good results when applied to the closely related Heisenberg model of 
ferromagnetism. A second-order transition is predicted, in disagreement with mean field 
and some computer simulation results. 

1. Introduction 

Fluids consisting of anisotropic molecules can under some circumstances at low 
temperatures form a phase in which the molecules possess angular but no spatial order. 
This phase-the simplest liquid crystal phase-is known as the nematic phase (Chan- 
drasekhar 1977). The simplest fluid for which such a transition can take place consists 
of molecules which have uniaxial symmetry. The order parameter for the transition 
is a tensor (the Saupe ordering matrix) 

stj =t(3n*i(R)n*,(n)-sij),,,e,u,,, ( 1 )  

where R is the direction of the molecule, h(R) is a unit vector in that direction, and 
n*,(R) = 6(R) GI, and Gz is a unit vector in the i direction. In the absence of an external 
field 

where f is the liquid crystal director (a unit vector) and axis of symmetry for molecule 
directions, and 

I', = ( ~ 2  (COS e))molecules (3) 
where cos 8 = f .  n^(R). 

About 25 years ago Maier and Saupe (1958, 1959, 1960) enunciated a mean field 
theory of the nematic phase. This theory is an analogue of the van der Waals theory 
of the liquid-vapour transition and assumes that the orientationally ordering forces 
are long range. It was rather successful, except in the immediate region of the 
nematic-isotropic transition. The nematic phase diagram should be universal, which 
is not the case precisely. However, the main discrepancies between the Maier-Saupe 
theory and experiment were as follows. The order parameter susceptibility above the 

t Permanent address: Department of Physics, North-Eastern Hill University, Shillong 793003, India. 
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phase transition is predicted to behave as 

X a ( T -  T*)- ' ;  (4) 

T* is a temperature below the nematic-isotropic transition at TNl. This does correspond 
to observed behaviour: however, whereas in the Maier-Saupe theory t* = 
( TNI - T*) /  T* - I O % ,  experimentally t* - 0.2%. Another notable discrepancy is the 
entropy jump per particle A S N I  at the first-order phase transition : typically Maier-Saupe 
overestimates this by a factor of ten, as compared with experiment. 

A number of reasons have been proposed to explain why the Maier-Saupe theory 
fails to explain the details of the nematic-isotropic transition. It has been pointed out 
that it is the short-range details of molecular shape, rather than long-range inter- 
molecular dispersion forces, which govern the phase transition. However, as we and 
others have shown (Sluckin and Shukla 1983), using modern perturbation theory of 
liquids, the predicted details of the transition are relatively robust against changes in 
the form of the potential. Others have shown that a mean field theory of the nematic 
phase of biaxial molecules can predict smaller t* and A S N I ,  and even predict a 
second-order nematic-isotropic transition (Mulder and Ruijgrok 1982), observing that 
an important feature of nematogenic fluid molecules is precisely their biaxiality. 

Nevertheless we do not believe that biaxiality is a crucial feature: rather we believe, 
mainly as a result of computer simulation studies on fluids of uniaxial molecules, that 
the observed small t* and A s N I  are universal features of the phase transition. It is 
often useful, when studying the phase transition properties of a system, to study a 
similar but simpler system in the same universality class, which will exhibit the same 
generic behaviour in the neighbourhood of the phase transition. Lebwohl and Lasher 
(1972) have introduced a lattice model of a liquid crystal, with Hamiltonian 

H,,=  - E o  c P,(cos a,) 
(1,) 

where at each site i on a prescribed three-dimensional lattice (in our case a simple 
cubic lattice) lies a rigid rotator whose state is defined by a unit vector $,(e,, 4,) the 
direction in which it points. The sum runs over nearest-neighbour pairs on the lattice. 
Following the usual convention 8, and q$ represent the polar and azimuthal angles 
respectively, so that the three components of ri are sin 8, cos q5,, sin 6, sin 4, and cos 8,. 
In this representation the angle between neighbouring vectors is given by 

ti, - h, = cos a, = cos e, cos e, +sin e, sin e, COS( 4, - 4,) ( 5 a )  

and P,(cos ill,) is the second Legendre polynomial. This Hamiltonian undergoes an 
isotropic-nematic transition. 

Monte Carlo studies of the Lebwohl-Lasher model given results for A S N l  and t* 
in line with experimental results on real liquid crystal systems; for this reason we 
believe the two systems are in the same universality class. The mean field theory of 
the Lebwohl-Lasher model is, identically, the Maier-Saupe theory. More sophisticated 
mean field theories, using larger clusters in the spirit on Kikuchi and Bethe-Peierls, 
have been attempted (Sheng and Wojtowicz 1976, van der Haegen et a1 1980). There 
is an improvement in the calculated values of t* and A S N I ,  as indicated in table 1 .  
Nevertheless, t* and A S N I  are not well described by current mean field theories. Mean 
field theories ignore fluctuations and always overestimate T,. It seems likely that if 
these fluctuations were taken into account, the discrepancies between theory and 
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Table 1. The Lebwohl-Lasher model (simple cubic lattice). 

Mean field Two-cluster Four-cluster 
Monte Carlo” (Maier-Saupe) mean fieldh mean field‘ 

T , , / E ~  1.127 I .32 1 1.160 1.142 
4 N l  0.27 0.43 0.39 0.35 
A s N I  0.07 0.55 0.33 
t* -0.002 0.092 0.054 0.038 

a Luckhurst and Simpson 1982, 
Van der Haegh et a1 (1980). 

Sheng and Wojtowicz (1976). 

simulation (and implicitly experiment) could be resolved, in particular the dramatic 
overestimates of t* and ASNI. 

We have carried out what is, as far as we know, the first non-mean-field treatment 
of the Lebwohl-Lasher model. We have exploited similarities between the Lebwohl- 
Lasher model and the Heisenberg model of ferromagnetism, and have brought to bear 
upon the liquid crystal problem techniques developed in the study of the magnetic 
problem. JosC et a1 (1977) pioneered a particular real space renormalisation group 
(RG) approach to the study of the two-dimensional X Y  model, based on the bond- 
moving scheme of Migdal (1975) and Kadanoff (1976). This was generalised by 
Jayaprakash et a1 (1978) to apply to the X Y  and Heisenberg models in three dimensions. 
We have essentially carried over this method to study the Lebwohl-Lasher model. 

2. Renormalisation group analysis of the Lebowhl-Lasher model 

We study the reduced Hamiltonian 

whereas by contrast Jayaprakash et a1 (1978) studied a reduced Hamiltonian 

where we emphasise that x = P l ( x ) ,  the first Legendre polynomial. 
It is convenient to employ a Fourier-Legendre transform 

2 

exp[KP,(cos a,)]= c A P d C O S  a,,). 
f = O  

In practice we truncate at 1 = 20, but all results are sensibly insensitive to this truncation. 
The RG transformations involve potential-moving and decimation steps. The advan- 

tage of the representation (8) is that it incorporates in a very simple way the effect of 
decimation along a one-dimensional chain of atoms. We can see this by considering 
a chain of three spins, and decimating over the middle spin. Then 

One may easily verify that {f;’} in (9) are given by the simple formula 

f;‘= & ( { A ) )  =f : l (21+ 1 ) .  (10) 
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For an infinite chain (10) constitutes the renormalisation group transformation for 
a change in length scale of a factor of two.The set { A }  characterises the initial 
Hamiltonian, and the set { f y  } describes the renormalised Hamiltonian after the degrees 
of freedom at alternative sites have been integrated out. The Migdal-Kadanoff scheme 
essentially bootstraps this result, which is exact in one dimension, to three dimensions 
(Burkhardt 1982). We may most easily visualise how this is carried out using the 
potential-moving viewpoint of Kadanoff. 

Let us denote interactions between neighbouring sites by K,, Ky and K,, depending 
on whether the bonds are along the x, y or z axes. The RG transformation involving 
a length scale change of two takes place in three steps. 

( 1 )  Alternate K, and K, bonds are moved parallel to themselves by one lattice 
spacing. One now decimates over alternate spins in the x direction which are now 
only connected by bonds in the x direction to just two other sites. 

(2) Alternate K, and K, bonds are moved parallel to themselves and an analogous 
decimation along the y axis performed. 

(3) Alternate K, and K, bonds are moved, and one decimates along the z direction. 
At the end of the last step we arrive at a lattice with lattice spacing twice that of 

the original lattice and renormalised nearest-neighbour interactions. 
If we let Rb denote the bond-moving operation and initially suppose that the 

interaction is isotropic and characterised by a set of Fourier-Legendre coefficients { A } .  
Then after the three steps characterised above, the renormalised interactions along the 
x, y and z axes are given respectively by 

R x ( { f ; } )  = RbRbRd({f;))  ( l l a )  

Ry ( { f; 1 = b R d R b (  { f; }) (lib) 

R z ( { f ; } )  = RdRbRb({f;})* (1lc) 
For an initially isotropic Hamiltonian, the renormalised interactions R,, R,, R, are 

not, however, equal. We describe below a procedure which chooses one of these three 
recursion relations. 

The bond-moving operation for a nearest-neighbour interaction of the form given 
in (6) or (7) is simply effected by replacing K by 2K. Equivalently, in the Fourier- 
Legendre representation, the bond-moving operation is given by 

&{AI) = <fP> (12a) 

with 

where ( I ,  1200 I I ,  1210) is a Clebsch-Gordan coefficient in the usual notation (Brink and 
Satchler 1968, p 136ff). If the interaction is exactly of the form of (6) or (7) then (12) 
is simply equivalent to replacing K by 2K, but it is not limited to nearest-neighbour 
interactions of this form. Indeed, the decimation operation does change the form of 
the interaction in detail, and so the form (126) is essential. After each decimation 
operation we normalise the { A }  so as to ensure that 

m 

C f ; = l .  
/=0 

This normalisation is preserved by the bond-moving operation. Its significance is that 
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unimportant numerical constants, generated in decimation, are ignored, and the zero 
of the interaction energy is taken to be the state for which neighbouring spins are 
parallel (for Zl) a parallel or antiparallel (for Z,, in which these configurations are 
energetically degenerate). 

We find it convenient to work with a parameter 

K e f i = i f J F /  f = O  x =  I , 

For an interaction of the form of (6) Keff = K .  We find that the set of coefficients {f;'}, 
as defined in ( lo) ,  along with the normalisation (13), leaves the form of R2 almost 
unchanged. Consequently the single parameter Keff serves exceedingly well to charac- 
terise the set {f;'}. 

This is a greatly simplifying feature in the application of the Migdal-Kadanoff 
scheme. We find that bond-moving performed by calculating Keff from (14) and 
doubling it, gives very nearly the same results as by employing the whole machinery 
of Clebsch-Gordan coefficients embodied in (12).  

With this perspective we return to the renormalised interactions R,, R,, R, described 
in ( 1  1). Some reflection shows that the fixed points of R,, R ,  R,,-K,*, K S ,  KT-are 
in the ratio 1 :2:4 ,  although the different recursion relations ( 1  1 )  give rise to the same 
critical exponents. In general for a Migdal-Kadanoff transformation with scale change 
b, there will be three fixed points, related by the ratios 1 : b:  b2.  In some applications 
it is possible to work in the limit b + 1, when the three critical values of K * converge 
to a single value close to that given by the middle recursion relation ( 1  1 b) .  In this 
spirit we chose recursion relation ( 1  1 b )  as the canonical RG transformation. 

It turns out to be much simpler computationally to follow the parameter Kefi under 
RG flows, than to follow the full set { J } ;  one then only uses the Fourier-Legendre 
representation in the decimation step. We present results for X, using this procedure, 
and compare them to the results of Jayaprakash et a1 (1978), who use the full flows 
of { A } ;  for all purposes the results are very similar. Consequently we feel confident 
in merely following the parameter Keff when iterating Z2 under the RG flows. The 
crucial difference between 2, and Z2 is that the Fourier-Legendre representation of 
E2 admits only terms of even I. The RG trajectories exhibit a non-trivial fixed point 
K *  = 0.58; for K < K * ,  Kef f  reaches a high-temperature fixed point at Keff = 0, A = 6io, 
and for K > K *  the { A }  reach a low-temperature fixed point. 

A thermal exponent A T  at the transition may be defined either by diagonalising the 
matrix af:/af;, and taking the largest eigenvalue E ,  or by putting 

a K kfi/a K 1 K* = E = 2% (15) 

where K ' =  R , ( K ) .  Both procedures give rise to the same results within the accuracy 
quoted. We find AT=0.85, whereas for 2,, hT=0.86. 

3. Effect of an ordering field 

We have also calculated the effect of adding an ordering field perturbation to the 
Hamiltonian, which now becomes 

X; = K 1 P2(c0s O,,) + V P2(c0s f f t ) .  
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This is analogous to the magnetic field perturbation discussed by Jayaprakash et a1 
(1978). 

The Migdal-Kadanoff scheme is ambiguous in its treatment of ordering fields; 
following Jayaprakash et a1 we have moved the fields with the bonds along the y axis. 
The bond-moving transformation merely takes V to 2 V. The decimation transformation 
generates terms nonlinear in V, but these may be neglected near the fixed point K = K *, 
v=o. 

We can see how decimation affects V by considering a chain of three spins as in 
(9). Then, to linear order in V, the new interaction after decimation is 

5 dR2 exp[KP,(cos RI,) + KP,(cos R23)] 
4rr 

x [i  + VPJCOS e,) + 2 VP,(COS e,) + VP,(COS e,)] 

X[I + VP,(CO~ e,) + 2 VP,(CO~ e,) + VP,(COS e ~ .  (17) 

A renormalised value of V may be obtained by noting that if R,3=0,  from the 
normalisation (13) the resulting interaction should be of the form 1 +2VdP2(cos e l ) .  
The resulting integrals on the right-hand side of (17) can now be carried out, using 
the closure relations: (Brink and Satchler 1968, pp 145-6) 

P / ( C O S  a,,) = E  C;"(cos n,)c;"(cos R,) 

[(21+ I)/4T]"2c;"(cos a,,) = YT(c0s R , )  

m 

( 4 ~ ) - '  [ Pf,(cos R)Pf2(cos R)Pf(cos R)  dR = [1/(21+ l)]~(Z11200~ 111210)~2 (18c) 

we obtain (for R I 3  = 0) 

f :  [1+2VP,(COSR,)]+2V~ f f r , ~ ~ ~ 1 , 1 , 0 0 ~ Z , 1 , 1 0 ~ P * ( c o s R , )  h i  /,I2 

= f ," [ 1 + 2 VdP, ( cos R , ) ] * (19) 
We may now make use of the relation (126) to write the total renormalised ordering 
field V', after bond-moving and decimation stepst, in the linear approximation, as 

V' = 4 V( 1 + f';"/f:b) (20) 

where jp" = (j;)'. 
The order field exponent at the transition A, is thus given by 

(a v'/a v)K* = 2 h v  = 4( 1 +fThh/5fibb) (21) 

where {JT} are evaluated at the fixed point. 

t There is a misprint in equation ( I  1) of Jayaprakash er al (1978), which should read 

=4[1 + f f / f e ( 2 / +  l)]. 
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We recall that mean field theory predicts a nematic-paranematic critical point near 
T =  TN, for V-0.05 (Fan and Stephen 1970, Wojtowicz and Sheng 1974, Palffy- 
Muhoray and Dunmur 1983). 

Our results for fixed points and critical exponents are displayed in table 2. 

Table 2. 

Heisenberg model (X,) Lebwohl-Lasher model ( X 2 )  

(A) ( B )  ( C )  
K, 0.692Ia’ 0.41 0.449 0.583 

AT 1 .35‘h’ 0.86 0.86 0.85 
A V  2.49Ib’ 2.55 2.58 2.59 

(0.887 *0.003) 

(A) High-temperature series ‘exact’ results: 
(B)  Jayaprakash et a /  (1978), using full { A }  RG flows. 
( C )  This work, using K, ,  flows. 
The figure in parentheses is a value from a Monte Carlo simulation (Luckhurst and Simpson 
1982). For a first-order transition A T  = A, = 3. 

Betts ( l977) ,  ( b )  Jasnow and Wortis (1978). 

4. Concluding remarks 

Our work predicts that R2 has a second-order phase transition similar to that of 2,. 
The transition temperature for X 2  is predicted to be lower than that for XI and this 
feature of the prediction is in line with exact results. Indeed from table 2 it can be 
seen that the ratio of the predicted critical temperature to the actual critical temperature 
is the same for 2, and X 2  using comparable procedures. The thermal exponent AT is 
given poorly for %‘, by the Migdal-Kadanoff procedure: we cannot be surprised if AT is 
not well predicted for X 2  either. But the order parameter exponent is given well for 
RI, and hence we might expect good results for R2-at least the trends ought to be 
correct. Nevertheless, our prediction for the order of the phase transition is in disagree- 
ment with the predictions of the Maier-Saupe theory as well as computer simulations. 
There is, however, a strong size dependence of the nature of the transition, and small 
(1000 particle) simulations do not distinguish, for this system, the order of the transition. 

The discrepancy between computer simulations and our results cannot be resolved 
within the Migdal-Kadanoff approximation employed in this study. Further investiga- 
tions, using improved theoretical and computation techniques, are highly desirable. 

The failure of the Migdal approximation to illuminate the nature of the nematic- 
isotropic transition is disappointing, but nevertheless there may be some significance in 
our results. There have been speculations that in d, 2 < d < 3, the nematic-isotropic 
transition would become second order. We expect that, by the Mermin-Wagner 
theorem (Mermin and Wagner 1966), d = 2 is the lower critical dimension of the 
nematic phase. The Migdal approximation, on the other hand, is a ‘realisable approxi- 
mation’, in the sense that it is an exact solution of a different problem. In our case 
the problem is one with Hamiltonian given by (5) on a fractal (Mandelbrot 1977), 
self-similar, lattice (Burkhardt 1982) with Haussdorf-Besicouitch dimension d = 3, but 
with topological dimension DT = 1. Clearly the Migdal approximation assumes that the 
topological dimension (=  1 +dimension of a cut which divides the system into two) 
is an irrelevant variable: this is evidently not the case, but the error is consistent with 
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the rather cavalier essays into fractional dimensions made by RG trail blazers in the 
early days. It seems that in calculating A T  the system is, for some as yet unexplained 
reason, more interested in DT than in d, whereas for AV,  d is the controlling variable. 
It seems that although the speculations of a critical dimension dividing a first- and 
second-order regions for the nematic-isotropic transition are a little difficult to pin 
down, nevertheless in a realisable model which is in some sense a compromise between 
one and three dimensions, there is a second-order nematic-isotropic transition, which 
is almost first order as far as the order parameter p2 (conjugate to V) is concerned, 
but does not have this property as far as the entropy S (conjugate to T )  is concerned. 
There is at least some echo here of the Monte Carlo results of table 1, which show a 
large discontinuity in p2, but a very small discontinuity in S. 
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